

DATA SHEET

Product Name High Power Wire-wound Flat Aluminum Shell Fixed Resistors

Part NameHPWR 110W、120W、220W SeriesFile No.DIP-SP-058

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. Scope

1.1 This datasheet is the characteristics of High Power Wire-wound Flat Aluminum Shell Fixed Resistors manufactured by UNI-ROYAL.

- 1.2 High Power Wire-wound Flat Aluminum Shell Fixed Resistors
- 1.3 Easy to assembled on PCB
- 1.4 Application: Power supply of frequency converter
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 High Power Wire-wound Flat Aluminum Shell Fixed Resistors the 1st to 4rd digits are to indicate the product type.
- Example: HPWR= High Power Wire-wound Flat Aluminum Shell Fixed Resistors
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal Size	W2	W3	W4	W5	W6	W8	WA	WG
Small Size	S2	S 3	S4	S5	S6	S 8	SA	SG

1	w~	16W	$(\geq$	1W)
L	vv ~	10 //	(=	1 **)

Wattage 1 2 3 5 7 8 9 10 Normal Size 1W 2W 3W 5W 7W 8W 9W AW						
	5 7 8 9 10 15	5	3	2	1	Wattage
	W 7W 8W 9W AW FW	5W	3W	2W	1W	Normal Size
Small Size1S2S3S5S7S8S9SAS	5S 7S 8S 9S AS FS	5S	3S	2S	1S	Small Size

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$

2.4 The 8th to 11th digits is to denote the Resistance Value.

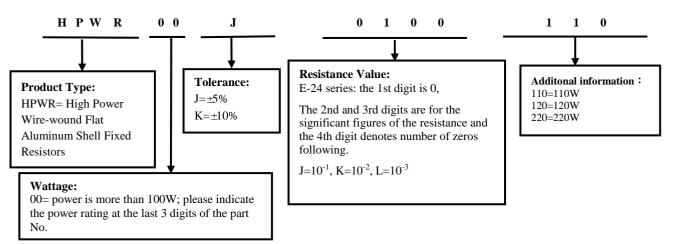
2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the zeros following;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{-2} L=10^{-3} M=10^{-4} N=10^{-5} P=10^{-6} 2.4.3 The 12^{th}, 13^{th} \& 14^{th} digits.$

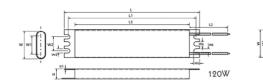
The 12th digit is to denote the Packaging Type with the following codes:


B=Bulk /Box

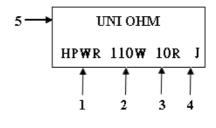
2.4.4 Current Sense Resistors, The 13th digit should be filled with "0"

2.4.5 Current Sense Resistors, The 14th digit should be filled with "0"

3. <u>Ordering Procedure</u> (Example: HPWB 110W +5%)


(Example: HPWR 110W $\pm 5\%$ 10 Ω B/B)

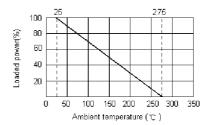
4. Dimension



				Un	it:mm
Туре	L+0/-5	L1±0.5	W±0.5	H±0.5	L3±5
HPWR 110W	105	91.5	44.6	11.5	300
HPWR 120W	195	184	40	14	250
HPWR 220W	200	187	44.6	11.5	250

*Remark: For further information, please contact our sales team.

5. Resistor marked



Code description and regulation:

- 1. Resisters type
- 2. Wattage rating
- 3. Nominal resistance value
- 4. Resistance tolerance. $J: \pm 5\%$
- 5. Trademark

marking: LASER PRINT

6. Derating Curve

6.1Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Performance Specification

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	±300 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (Upper limit temperature or Lower limit temperature) t_1: +25 °C or specified room temperature t_2: Upper limit temperature or Lower limit temperature test temperature
Short time overlord	Resistance change rate is : \pm (5%+0.05 Ω) max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified in the above list, whichever less for 10 seconds.
Load life (room temperature)	Resistance change rate is : \pm (5%+0.05 Ω) max. With no evidence of mechanical damage.	(Room temperature $25^{\circ}C \pm 5^{\circ}C$) continue electrify for 96h.
Humidity (Steady state)	Resistance change rate is: $\pm(3\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90~95% RH relative humidity
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	AC 3000V for 60 seconds

8. <u>Note</u>

8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

9. <u>Record</u>

	Version Description	Page	Date	Amended by	Checked by
I First version I~4 Apr. 16, 2019 Haiyan Chen Yunua X	1 First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice